Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.117
Filtrar
1.
J Bacteriol ; 206(3): e0038423, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38426721

RESUMO

Single-strand RNA (ssRNA) and single-strand DNA phages elicit host lysis using a single gene, in each case designated as sgl. Of the 11 identified Sgls, three have been shown to be specific inhibitors of different steps in the pathway that supplies lipid II to the peptidoglycan (PG) biosynthesis machinery. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics. Here, we designate these as type I Sgls. In this formalism, the other eight Sgls are assigned to type II, the best-studied of which is protein L of the paradigm F-specific ssRNA phage MS2. Comparisons have suggested that type II Sgls have four sequence elements distinguished by hydrophobic and polar character. Environmental metatranscriptomics has revealed thousands of new ssRNA phage genomes, each of which presumably has an Sgl. Here, we describe methods to distinguish type I and type II Sgls. Using phase contrast microscopy, we show that both classes of Sgls cause the formation of blebs prior to lysis, but the location of the blebs differs significantly. In addition, we show that L and other type II Sgls do not inhibit the net synthesis of PG, as measured by radio-labeling of PG. Finally, we provide direct evidence that the Sgl from Pseudomonas phage PP7 is a type I Sgl, in support of a recent report based on a genetic selection. This shows that the putative four-element sequence structure suggested for L is not a reliable discriminator for the operational characterization of Sgls. IMPORTANCE: The ssRNA phage world has recently undergone a metagenomic expansion upward of a thousandfold. Each genome likely carries at least one single-gene lysis (sgl) cistron encoding a protein that single-handedly induces host autolysis. Here, we initiate an approach to segregate the Sgls into operational types based on physiological analysis, as a first step toward the alluring goal of finding many new ways to induce bacterial death and the attendant expectations for new antibiotic development.


Assuntos
Bacteriófagos , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Bactérias/genética , Antibacterianos/metabolismo , Parede Celular/metabolismo , Metagenômica , RNA/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38431846

RESUMO

Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.


Assuntos
Bacteriófagos , Synechococcus , Synechococcus/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Transporte
3.
Nat Commun ; 15(1): 2746, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553443

RESUMO

Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.


Assuntos
Acinetobacter , Bacteriófagos , Vírus de RNA , Humanos , Proteínas de Fímbrias/metabolismo , Acinetobacter/metabolismo , Microscopia Crioeletrônica , Fímbrias Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
4.
Nanoscale ; 16(13): 6603-6617, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38470366

RESUMO

The TRAIL (Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand) is a promising candidate for cancer treatment due to its unique ability to selectively induce programmed cell death, or apoptosis, in cancer cells while sparing healthy ones. This selectivity arises from the preferential binding of the TRAIL to death receptors on cancer cells, triggering a cascade of events that lead to their demise. However, significant limitations in using the TRAIL for cancer treatment are the administration of the TRAIL protein that can potentially lead to tissue toxicity (off-target) and the short half-life of the TRAIL in the body which may necessitate frequent and sustained administration; these can pose logistical challenges for long-term treatment regimens. We have devised a novel approach for surmounting these limitations by introducing the TRAIL gene directly into cancer cells, enabling them to produce the TRAIL locally and subsequently trigger apoptosis. A novel gene delivery system such as a bacteriophage-based particle TPA (transmorphic phage/AAV) was utilized to address these limitations. TPA is a hybrid M13 filamentous bacteriophage particle encapsulating a therapeutic gene cassette with inverted terminal repeats (ITRs) from adeno-associated viruses (AAVs). The particle also showed a tumour targeting ligand, CDCRGDCFC (RGD4C), on its capsid (RGD4C.TPA) to target the particle to cancer cells. RGD4C selectively binds to αvß3 and αvß5 integrins overexpressed on the surface of most of the cancer cells but is barely present on normal cells. Hepatocellular carcinoma (HCC) was chosen as a model because it has one of the lowest survival rates among cancers. We demonstrated that human HCC cell lines (Huh-7 and HepG2) express αvß5 integrin receptors on their surface. These HCC cells also express death receptors and TRAIL-binding receptors. We showed that the targeted TPA particle carrying the transmembrane TRAIL gene (RGD4C.TPA-tmTRAIL) selectively and efficiently delivered the tmTRAIL gene to HCC cells resulting in the production of tmTRAIL from transduced cells and subsequently induced apoptotic death of HCC cells. This tumour-targeted particle can be an excellent candidate for the targeted gene therapy of HCC.


Assuntos
Bacteriófagos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptose , Bacteriófagos/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ligantes , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Terapia Genética/métodos
5.
Nature ; 627(8005): 905-914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448589

RESUMO

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Assuntos
Bacteriófagos , Capsídeo , DNA Viral , Genoma Viral , Vírion , Montagem de Vírus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Íons/análise , Íons/química , Íons/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Água/análise , Água/química , Água/metabolismo
6.
Arch Microbiol ; 206(4): 151, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467842

RESUMO

Salmonella Typhimurium, a zoonotic pathogen, causes systemic and localized infection. The emergence of drug-resistant S. Typhimurium has increased; treating bacterial infections remains challenging. Phage endolysins derived from phages have a broader spectrum of bacteriolysis and better bacteriolytic activity than phages, and are less likely to induce drug resistance than antibiotics. LysST-3, the endolysin of Salmonella phage ST-3, was chosen in our study for its high lytic activity, broad cleavage spectrum, excellent bioactivity, and moderate safety profile. LysST-3 is a promising antimicrobial agent for inhibiting the development of drug resistance in Salmonella. The aim of this study is to investigate the molecular characteristics of LysST-3 through the prediction of key amino acid sites of LysST-3 and detection of its mutants' activity. We investigated its lytic effect on Salmonella and identified its key amino acid sites of interaction with substrate. LysST-3 may be a Ca2+, Mg2+ - dependent metalloenzyme. Its concave structure of the bottom "gripper" was found to be an important part of its amino acid active site. We identified its key sites (29P, 30T, 86D, 88 L, and 89 V) for substrate binding and activity using amino acid-targeted mutagenesis. Alterations in these sites did not affect protein secondary structure, but led to a significant reduction in the cleavage activity of the mutant proteins. Our study provides a basis for phage endolysin modification to target drug-resistant bacteria. Identifying the key amino acid site of the endolysin LysST-3 provides theoretical support for the functional modification of the endolysin and the development of subsequent effective therapeutic solutions.


Assuntos
Bacteriófagos , Fagos de Salmonella , Fagos de Salmonella/genética , Aminoácidos , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Antibacterianos/farmacologia
7.
Org Lett ; 26(13): 2601-2605, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38529932

RESUMO

We report here an enzymatic strategy for asparaginyl endopeptidase-mediated peptide cyclization. Incorporation of chloroacetyl groups into the recognition sequence of OaAEP1 enabled intramolecular cyclization with Cys residues. Combining this strategy and phage display, we identified nanomolar macrocyclic peptide ligands targeting TEAD4. One of the bicyclic peptides binds to TEAD4 with a KD value of 139 nM, 16 times lower than its linear analogue, demonstrating the utility of this platform in discovering high-affinity macrocyclic peptide ligands.


Assuntos
Bacteriófagos , Peptídeos , Ciclização , Peptídeos/química , Cisteína Endopeptidases , Ligantes , Bacteriófagos/metabolismo , Biblioteca de Peptídeos , Peptídeos Cíclicos/química
8.
Microbiol Spectr ; 12(4): e0398923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451091

RESUMO

Bacteria have evolved diverse defense mechanisms to counter bacteriophage attacks. Genetic programs activated upon infection characterize phage-host molecular interactions and ultimately determine the outcome of the infection. In this study, we applied ribosome profiling to monitor protein synthesis during the early stages of sk1 bacteriophage infection in Lactococcus cremoris. Our analysis revealed major changes in gene expression within 5 minutes of sk1 infection. Notably, we observed a specific and severe downregulation of several pyr operons which encode enzymes required for uridine monophosphate biosynthesis. Consistent with previous findings, this is likely an attempt of the host to starve the phage of nucleotides it requires for propagation. We also observed a gene expression response that we expect to benefit the phage. This included the upregulation of 40 ribosome proteins that likely increased the host's translational capacity, concurrent with a downregulation of genes that promote translational fidelity (lepA and raiA). In addition to the characterization of host-phage gene expression responses, the obtained ribosome profiling data enabled us to identify two putative recoding events as well as dozens of loci currently annotated as pseudogenes that are actively translated. Furthermore, our study elucidated alterations in the dynamics of the translation process, as indicated by time-dependent changes in the metagene profile, suggesting global shifts in translation rates upon infection. Additionally, we observed consistent modifications in the ribosome profiles of individual genes, which were apparent as early as 2 minutes post-infection. The study emphasizes our ability to capture rapid alterations of gene expression during phage infection through ribosome profiling. IMPORTANCE: The ribosome profiling technology has provided invaluable insights for understanding cellular translation and eukaryotic viral infections. However, its potential for investigating host-phage interactions remains largely untapped. Here, we applied ribosome profiling to Lactococcus cremoris cultures infected with sk1, a major infectious agent in dairy fermentation processes. This revealed a profound downregulation of genes involved in pyrimidine nucleotide synthesis at an early stage of phage infection, suggesting an anti-phage program aimed at restricting nucleotide availability and, consequently, phage propagation. This is consistent with recent findings and contributes to our growing appreciation for the role of nucleotide limitation as an anti-viral strategy. In addition to capturing rapid alterations in gene expression levels, we identified translation occurring outside annotated regions, as well as signatures of non-standard translation mechanisms. The gene profiles revealed specific changes in ribosomal densities upon infection, reflecting alterations in the dynamics of the translation process.


Assuntos
Bacteriófagos , Lactococcus , Biossíntese de Proteínas , Perfil de Ribossomos , Regulação para Baixo , Bacteriófagos/genética , Bacteriófagos/metabolismo , RNA Mensageiro/metabolismo , Nucleotídeos/metabolismo , Uridina Monofosfato/metabolismo
9.
Methods Mol Biol ; 2793: 3-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526720

RESUMO

Phage display is an important technology to study protein-protein interaction and protein evolution, with applications in basic science and applied biotechnology, such as drug discovery and the development of targeted therapies. However, in order to be successful during a phage display screening, it is paramount to have good phage libraries. Here, we described detailed procedures to generate peptide phage display libraries with high diversity and billions of transformants.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Biotecnologia/métodos , Descoberta de Drogas , Técnicas de Visualização da Superfície Celular
10.
Methods Mol Biol ; 2793: 41-54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526722

RESUMO

Resistance to therapeutic antibodies caused by on-target point mutations is a major obstacle in anticancer therapy, creating an "unmet clinical need." To tackle this problem, researchers are developing new generations of antibody drugs that can overcome the resistance mechanisms of existing agents. We have previously reported a structure-guided and phage-assisted evolution (SGAPAE) approach to evolve cetuximab, a therapeutic antibody, to effectively reverse the resistance driven by EGFRS492R or EGFRG465R mutations, without changing the binding epitope or compromising the antibody efficacy. In this protocol, we provide detailed instructions on how to use the SGAPAE approach to evolve cetuximab, which can also be applied to other therapeutic antibodies for reversing on-target point mutation-mediated resistance. The protocol consists of four steps: structure preparation, computational prediction, phage display library construction, and antibody candidate selection.


Assuntos
Anticorpos Monoclonais , Bacteriófagos , Cetuximab , Mutação Puntual , Receptores ErbB/metabolismo , Bacteriófagos/metabolismo , Anticorpos Monoclonais Humanizados/genética
11.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473932

RESUMO

Per- and poly-fluoroalkyl substances (PFAS), such as GenX, are a class of highly stable synthetic compounds that have recently become the focus of environmental remediation endeavors due to their toxicity. While considerable strides have been made in PFAS remediation, the diversity of these compounds, and the costs associated with approaches such as ion exchange resins and advanced oxidation technologies, remain challenging for widespread application. In addition, little is known about the potential binding and impacts of GenX on human proteins. To address these issues, we applied phage display and screened short peptides that bind specifically to GenX, with the ultimate goal of identifying human proteins that bind with GenX. In this study we identified the amino acids that contribute to the binding and measured the binding affinities of the two discovered peptides with NMR. A human protein, ankyrin-repeat-domain-containing protein 36B, with matching sequences of one of the peptides, was identified, and the binding positions were predicted by docking and molecular dynamics simulation. This study created a platform to screen peptides that bind with toxic chemical compounds, which ultimately helped us identify biologically relevant molecules that could be inhibited by the GenX, and also provided information that will contribute to future bioengineered GenX-binding device design.


Assuntos
Bacteriófagos , Fluorocarbonos , Humanos , Peptídeos/química , Fluorocarbonos/metabolismo , Bacteriófagos/metabolismo
12.
Nature ; 627(8003): 431-436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383786

RESUMO

To survive bacteriophage (phage) infections, bacteria developed numerous anti-phage defence systems1-7. Some of them (for example, type III CRISPR-Cas, CBASS, Pycsar and Thoeris) consist of two modules: a sensor responsible for infection recognition and an effector that stops viral replication by destroying key cellular components8-12. In the Thoeris system, a Toll/interleukin-1 receptor (TIR)-domain protein, ThsB, acts as a sensor that synthesizes an isomer of cyclic ADP ribose, 1''-3' glycocyclic ADP ribose (gcADPR), which is bound in the Smf/DprA-LOG (SLOG) domain of the ThsA effector and activates the silent information regulator 2 (SIR2)-domain-mediated hydrolysis of a key cell metabolite, NAD+ (refs. 12-14). Although the structure of ThsA has been solved15, the ThsA activation mechanism remained incompletely understood. Here we show that 1''-3' gcADPR, synthesized in vitro by the dimeric ThsB' protein, binds to the ThsA SLOG domain, thereby activating ThsA by triggering helical filament assembly of ThsA tetramers. The cryogenic electron microscopy (cryo-EM) structure of activated ThsA revealed that filament assembly stabilizes the active conformation of the ThsA SIR2 domain, enabling rapid NAD+ depletion. Furthermore, we demonstrate that filament formation enables a switch-like response of ThsA to the 1''-3' gcADPR signal.


Assuntos
Bactérias , Proteínas de Bactérias , Bacteriófagos , Adenosina Difosfato Ribose/análogos & derivados , Adenosina Difosfato Ribose/biossíntese , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/química , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica , Hidrólise , NAD/metabolismo , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica
13.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397110

RESUMO

Various chimeric lysins have been developed as efficacious antibiotics against multidrug-resistant bacteria, but direct comparisons of their antibacterial activities have been difficult due to the preparation of multiple recombinant chimeric lysins. Previously, we reported an Escherichia coli cell-free expression method to better screen chimeric lysins against Staphylococcus aureus, but we still needed to increase the amounts of expressed proteins enough to be able to detect them non-isotopically for quantity comparisons. In this study, we improved the previous cell-free expression system by adding a previously reported artificial T7 terminator and reversing the different nucleotides between the T7 promoter and start codon to those of the T7 phage. The new method increased the expressed amount of chimeric lysins enough for us to detect them using Western blotting. Therefore, the qualitative comparison of activity between different chimeric lysins has become possible via the adjustment of the number of variables between samples without protein purification. We applied this method to select more active chimeric lysins derived from our previously reported chimeric lysin (ALS2). Finally, we compared the antibacterial activities of our selected chimeric lysins with reported chimeric lysins (ClyC and ClyO) and lysostaphin and determined the rank orders of antibacterial activities on different Staphylococcus aureus strains in our experimental conditions.


Assuntos
Antibacterianos , Bacteriófagos , Antibacterianos/farmacologia , Staphylococcus aureus/metabolismo , Lisostafina , N-Acetil-Muramil-L-Alanina Amidase , Bacteriófagos/metabolismo
14.
Curr Opin Microbiol ; 78: 102433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350268

RESUMO

Our ability to control the growth of Gram-negative bacterial pathogens is challenged by rising antimicrobial resistance and requires new approaches. Endolysins are phage-derived enzymes that degrade peptidoglycan and therefore offer potential as antimicrobial agents. However, the outer membrane (OM) of Gram-negative bacteria impedes the access of externally applied endolysins to peptidoglycan. This review highlights recent advances in the discovery and characterization of natural endolysins that can breach the OM, as well as chemical and engineering approaches that increase antimicrobial efficacy of endolysins against Gram-negative pathogens.


Assuntos
Anti-Infecciosos , Bacteriófagos , Antibacterianos/química , Peptidoglicano/metabolismo , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química , Anti-Infecciosos/metabolismo , Bactérias Gram-Negativas/metabolismo , Bacteriófagos/metabolismo
15.
Sci Adv ; 10(6): eadh9812, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335296

RESUMO

D29 mycobacteriophage encodes LysA endolysin, which mediates mycobacterial host cell lysis by targeting its peptidoglycan layer, thus projecting itself as a potential therapeutic. However, the regulatory mechanism of LysA during the phage lytic cycle remains ill defined. Here, we show that during D29 lytic cycle, structural and functional regulation of LysA not only orchestrates host cell lysis but also is critical for maintaining phage-host population dynamics by governing various phases of lytic cycle. We report that LysA exists in two conformations, of which only one is active, and the protein undergoes a host peptidoglycan-dependent conformational switch to become active for carrying out endogenous host cell lysis. D29 maintains a pool of inactive LysA, allowing complete assembly of phage progeny, thus helping avoid premature host lysis. In addition, we show that the switch reverses after lysis, thus preventing exogenous targeting of bystanders, which otherwise negatively affects phage propagation in the environment.


Assuntos
Bacteriófagos , Endopeptidases , Micobacteriófagos , Micobacteriófagos/metabolismo , Bacteriófagos/metabolismo , Mycobacterium smegmatis/metabolismo , Peptidoglicano/metabolismo
16.
Nat Commun ; 15(1): 1806, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418450

RESUMO

AcrIIA15 is an anti-CRISPR (Acr) protein that inhibits Staphylococcus aureus Cas9 (SaCas9). Although previous studies suggested it has dual functions, the structural and biochemical basis for its two activities remains unclear. Here, we determined the cryo-EM structure of AcrIIA15 in complex with SaCas9-sgRNA to reveal the inhibitory mechanism of the Acr's C-terminal domain (CTD) in mimicking dsDNA to block protospacer adjacent motif (PAM) recognition. For the N-terminal domain (NTD), our crystal structures of the AcrIIA15-promoter DNA show that AcrIIA15 dimerizes through its NTD to recognize double-stranded (ds) DNA. Further, AcrIIA15 can simultaneously bind to both SaCas9-sgRNA and promoter DNA, creating a supercomplex of two Cas9s bound to two CTDs converging on a dimer of the NTD bound to a dsDNA. These findings shed light on AcrIIA15's inhibitory mechanisms and its autoregulation of transcription, enhancing our understanding of phage-host interactions and CRISPR defense.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , DNA/metabolismo , Staphylococcus aureus/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo
17.
Microbiol Spectr ; 12(3): e0292723, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319074

RESUMO

Staphylococcus species in food produce Staphylococcal enterotoxins (SEs) that cause Staphylococcal food poisoning (SFP). More than 20 SE types have been reported, among which Staphylococcal enterotoxin A (SEA) has been recognized as one of the most important SEs associated with SFP. However, the regulatory mechanisms underlying its production remain unclear. Previously, we identified a major SFP clone in Japan, CC81 subtype-1, which exhibits high SEA production. In this study, we attempted to identify the factors contributing to this phenomenon. Thus, we demonstrated that the attenuation of the activity of endogenous regulator, Staphylococcal accessory regulator S (SarS), and the lysogenization of a high SEA-producing phage contributed to this phenomenon in CC81 subtype-1. Furthermore, our results indicated that SarS could directly bind to the promoter upstream of the sea gene and suppress SEA expression; this low SarS repression activity was identified as one of the reasons for the high SEA production observed. Therefore, we revealed that both exogenous and endogenous factors may probably contribute to the high SEA production. Our results confirmed that SE production is a fundamental and critical factor in SFP and clarified the associated production mechanism while enhancing our understanding as to why a specific clone frequently causes SFP. IMPORTANCE: The importance of this study lies in its unveiling of a molecular regulatory mechanism associated with the most important food poisoning toxin and the evolution of Staphylococcal food poisoning (SFP)-associated clone. SFP is primarily caused by Staphylococcus aureus, with Staphylococcal enterotoxin A (SEA) being commonly involved in many cases. Thus, SEA has been recognized as a major toxin type. However, despite almost a century since its discovery, the complete mechanism of SEA production is as yet unknown. In this study, we analyzed an SEA-producing SFP clone isolated in East Asia and discovered that this strain, besides acquiring the high SEA-producing phage, exhibits remarkably high SEA production due to the low activity of SarS, an intrinsic regulatory factor. This is the first report documenting the evolution of the SFP clone through the coordinated action of exogenous mobile genetic factors and endogenous regulators on this notorious toxin.


Assuntos
Bacteriófagos , Intoxicação Alimentar Estafilocócica , Humanos , Prófagos , Enterotoxinas/genética , Staphylococcus/metabolismo , Staphylococcus aureus/metabolismo , Bacteriófagos/metabolismo , Microbiologia de Alimentos
18.
Nat Commun ; 15(1): 1559, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378708

RESUMO

Trillions of microorganisms, collectively known as the microbiome, inhabit our bodies with the gut microbiome being of particular interest in biomedical research. Bacteriophages, the dominant virome constituents, can utilize suppressor tRNAs to switch to alternative genetic codes (e.g., the UAG stop-codon is reassigned to glutamine) while infecting hosts with the standard bacterial code. However, what triggers this switch and how the bacteriophage manipulates its host is poorly understood. Here, we report the discovery of a subgroup of minimal hepatitis delta virus (HDV)-like ribozymes - theta ribozymes - potentially involved in the code switch leading to the expression of recoded lysis and structural phage genes. We demonstrate their HDV-like self-scission behavior in vitro and find them in an unreported context often located with their cleavage site adjacent to tRNAs, indicating a role in viral tRNA maturation and/or regulation. Every fifth associated tRNA is a suppressor tRNA, further strengthening our hypothesis. The vast abundance of tRNA-associated theta ribozymes - we provide 1753 unique examples - highlights the importance of small ribozymes as an alternative to large enzymes that usually process tRNA 3'-ends. Our discovery expands the short list of biological functions of small HDV-like ribozymes and introduces a previously unknown player likely involved in the code switch of certain recoded gut bacteriophages.


Assuntos
Bacteriófagos , RNA Catalítico , RNA Catalítico/metabolismo , Vírus Delta da Hepatite/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
19.
Curr Protoc ; 4(2): e957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372457

RESUMO

In neurodegenerative diseases like Alzheimer's disease (AD), endogenous proteins or peptides aggregate with themselves. These proteins may lose their function or aggregates and/or oligomers can obtain toxicity, causing injury or death to cells. Aggregation of two major proteins characterizes AD. Amyloid-ß peptide (Aß) is deposited in amyloid plaques within the extracellular space of the brain and Tau in so-called neurofibrillary tangles in neurons. Finding peptide ligands to halt protein aggregation is a promising therapeutical approach. Using mirror-image phage display with a commercially available, randomized 12-mer peptide library, we have selected D-amino acid peptides, which bind to the Tau protein and modulate its aggregation in vitro. Peptides can bind specifically and selectively to a target molecule, but natural L-amino acid peptides may have crucial disadvantages for in vivo applications, as they are sensitive to protease degradation and may elicit immune responses. One strategy to circumvent these disadvantages is the use of non-naturally occurring D-amino acid peptides as they exhibit increased protease resistance and generally do not activate the immune system. To perform mirror-image phage display, the target protein needs to be synthesized as D-amino acid version. If the target protein sequence is too long to be synthesized properly, smaller peptides derived from the full length protein can be used for the selection process. This also offers the possibility to influence the binding region of the selected D-peptides in the full-length target protein. Here we provide the protocols for mirror-image phage display selection on the PHF6* peptide of Tau, based on the commercially available Ph.D.™-12 Phage Display Peptide Library Kit, leading to D-peptides that also bind the full length Tau protein (Tau441), next to PHF6*. In addition, we provide protocols and data for the first characterization of those D-peptides that inhibit Tau aggregation in vitro. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Mirror image phage display selection against D-PHF6* fibrils Support Protocol 1: Single phage ELISA Basic Protocol 2: Sequencing and D-peptide generation Basic Protocol 3: Thioflavin-T (ThT) test to control inhibition of Tau aggregation Support Protocol 2: Purification of full-length Tau protein Basic Protocol 4: ELISA to demonstrate the binding of the generated D-peptides to PHF6* and full-length Tau fibrils.


Assuntos
Doença de Alzheimer , Bacteriófagos , Humanos , Proteínas tau/genética , Proteínas tau/química , Proteínas tau/metabolismo , Aminoácidos , Biblioteca de Peptídeos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeo Hidrolases/metabolismo , Bacteriófagos/metabolismo
20.
J Chem Inf Model ; 64(5): 1615-1627, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38356220

RESUMO

Cancer immunotherapy harnesses the immune system to combat tumors and has emerged as a major cancer treatment modality. The PD-1/PD-L1 immune checkpoint modulates interactions between tumor cells and T cells and has been extensively targeted in cancer immunotherapy. However, the monoclonal antibodies known to target this immune checkpoint have considerable side effects, and novel PD-1/PD-L1 inhibitors are therefore required. Herein, a peptide inhibitor to disrupt PD-1/PD-L1 interactions was designed through structure-driven phage display engineering coupled to computational modification and optimization. BetaPb, a novel peptide library constructed by using the known structure of PD-1/PD-L, was used to develop inhibitors against the immune checkpoint, and specific peptides with high affinity toward PD-1 were screened through enzyme-linked immunosorbent assays, homogeneous time-resolved fluorescence, and biolayer interferometry. A potential inhibitor, B8, was preliminarily screened through biopanning. The binding affinity of B8 toward PD-1 was confirmed through computation-aided optimization. Assessment of B8 variants (B8.1, B8.2, B8.3, B8.4, and B8.5) demonstrated their attenuation of PD-1/PD-L1 interactions. B8.4 exhibited the strongest attenuation efficiency at a half-maximal effective concentration of 0.1 µM and the strongest binding affinity to PD-1 (equilibrium dissociation constant = 0.1 µM). B8.4 outperformed the known PD-1/PD-L1 interaction inhibitor PL120131 in disrupting PD-1/PD-L1 interactions, revealing that B8.4 has remarkable potential for modification to yield an antitumor agent. This study provides valuable information for the future development of peptide-based drugs, therapeutics, and immunotherapies for cancer.


Assuntos
Bacteriófagos , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1/química , Antígeno B7-H1/química , Peptídeos/farmacologia , Peptídeos/química , Bacteriófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...